

Deutsche Ausgabe: DOI: 10.1002/ange.201510156 Internationale Ausgabe: DOI: 10.1002/anie.201510156

Ca²⁺-Induced Oxygen Generation by FeO₄²⁻ at pH 9–10

Li Ma, William W. Y. Lam, Po-Kam Lo, Kai-Chung Lau,* and Tai-Chu Lau*

Abstract: Although FeO_4^{2-} (ferrate(IV)) is a very strong oxidant that readily oxidizes water in acidic medium, at pH 9-10 it is relatively stable (<2% decomposition after 1h at 298 K). However, FeO_4^{2-} is readily activated by Ca^{2+} at pH 9– 10 to generate O_2 . The reaction has the following rate law: $d[O_2]/dt = k_{Ca}[Ca^{2+}][FeO_4^{2-}]^2$. ¹⁸O-labeling experiments show that both O atoms in O_2 come from FeO_4^{2-} . These results together with DFT calculations suggest that the function of Ca^{2+} is to facilitate O-O coupling between two FeO₄² ions by bridging them together. Similar activating effects are also observed with Mg^{2+} and Sr^{2+} .

Plants and cyanobacteria make use of a Mn₄CaO₅ cluster located at the oxygen-evolving center (OEC) of photosystem II (PSII) to carry out water oxidation. [1-4] The protons and electrons obtained from water oxidation are ultimately used to reduce carbon dioxide to carbohydrates. Various multimanganese complexes have been synthesized as structural models of the OEC.[5-10] Notably the recently reported Mn_3CaO4 cluster^[7-9] and the Mn_4CaO_4 cluster^[10] are closely related to the cubane structure of the OEC. There are also a few studies on the effects of Ca2+ and other metal ions on the properties and reactivities of manganese oxo clusters and other model compounds of PSII. For example, the presence Ca²⁺ and other non-redox active metal agua ions shift the reduction potentials (E^0) of manganese oxo clusters and there is a linear correlation between E^0 and pK_a of the metal ions.[11,12] The catalytic water-oxidation activity of manganese oxides is enhanced by the presence of Ca²⁺. [13,14] Ca²⁺ is also found to induce the oxidative release of O2 from a non-heme iron peroxo complex, while other metal ions that are better Lewis acids than Ca²⁺ are not effective.^[15]

We are interested to investigate the effects of Ca²⁺ and other Group 2 ions on water oxidation by simple, well-defined molecular metal oxo species, which would facilitate interpretation of kinetic and mechanistic data. Herein we report the effects of Ca²⁺, Mg²⁺, and Sr²⁺ on water oxidation at pH 9-10 by K₂FeO₄, which is a very stable black solid at room temperature under moisture-free conditions. Potassium and other metal ferrates have received much attention in recent years because of their potential use as green oxidants in organic synthesis and water treatment.[16]

Although ferrate(VI) (FeO₄²⁻) is a strong oxidant (E^0 = 2.2 V and 0.72 V at pH 0 and 14, respectively) that readily oxidizes water at low pH,[17] at pH 9-10 it is relatively stable at room temperature. $^{[17]}$ In our hands decomposition of a 1 mm solution is less than 2% in 1h at pH 9-10 at 298 K, as monitored by UV/Vis spectrophotometry. At pH > 9 ferrate-(VI) exists predominantly as the FeO_4^{2-} ion, since the p K_a of HFeO₄ is 7.3. [16] However, upon adding a few equivalents of

Ca²⁺ to K₂FeO₄ in water at pH 10 and 298 K, O₂ evolution readily occurred, as monitored by a gas chromatographythermal conductivity detector (GC-TCD; Figure 1, Table S1). The rate and the amount of O₂ increase with increasing FeO₄²⁻ concentration (Figure 1a) and increasing Ca²⁺ concentration (Figure 1b), but saturation behavior occurs above

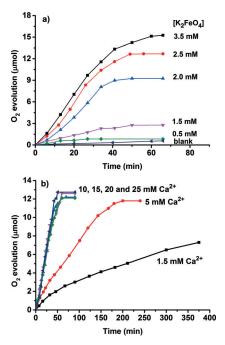


Figure 1. Plots of O2 evolution (determined by GC) versus time for Ca^{2+} -induced oxygen generation by K_2FeO_4 at initial pH 10, T=298 K. a) Effects of $[K_2FeO_4]$; $[Ca(OTf)_2] = 15 \text{ mm. b})$ Effects of $[Ca(OTf)_2]$; $[K_2 \text{FeO}_4] = 2.5 \text{ mM}.$

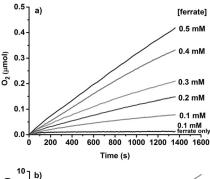
4 equivalents of Ca²⁺. A maximum yield of 85 % was obtained after 1 h. The yields were calculated based on Equation (1). An orange precipitate of Fe(OH)₃ was observed as the reaction proceeded. Similar yields and rates were obtained when the reaction was carried out at pH 9.0 (Table S1 and Figure S1 in the Supporting Information). In the absence of Ca²⁺ only a trace amount of O₂ was observed after 1 h (<2%). Mg²⁺ and Sr²⁺ showed similar activating effects on oxygen generation by FeO₄²⁻ at pH 9-10, with maximum O₂ yields of 73% and 90%, respectively (Table S1 and Figure S2-5).

According to Equation (1) the pH of the solution should
$$4 \operatorname{FeO_4^{2-}} + 10 \operatorname{H_2O} \rightarrow 4 \operatorname{Fe(OH)_3} + 3 \operatorname{O_2} + 8 \operatorname{OH^-}$$
 (1)

increase during water oxidation. Indeed when 2.5 mm of K₂FeO₄ was mixed with 15 mm Ca²⁺ the pH of the solution increased from 10.0 to 11.6 after 1 h. To minimize pH changes which could affect the rate of the reaction, the kinetics of M²⁺induced water oxidation were also investigated at relatively low FeO₄²⁻ concentrations (0.1–0.5 mm); under these conditions the pH of the solutions increased by no more than 0.2. At such low FeO₄²⁻ concentrations the amount of O₂ evolved could not be accurately determined by GC, instead O2 was continuously monitored by a Clark-type electrode.

3065

^[*] Dr. L. Ma, Dr. W. W. Y. Lam, Dr. P. K. Lo, Dr. K.-C. Lau, Prof. T.-C. Lau Department of Biology and Chemistry and Institute of Molecular Functional Materials, City University of Hong Kong Tat Chee Avenue, Kowloon Tong, Hong Kong (China) E-mail: kaichung@cityu.edu.hk bhtclau@cityu.edu.hk


Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/anie.201510156.

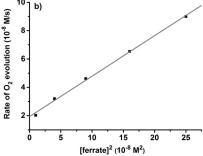


Figure 2 shows the effects of FeO_4^{2-} concentration on Ca^{2+} -induced oxygen generation by FeO_4^{2-} at pH 10. The experiments were carried out at nearly constant ionic strength using an excess of Ca^{2+} (20 mm). A plot of the initial rate vs. $[\text{FeO}_4^{2-}]^2$ gives a straight line (Figure 2b). The effects of Ca^{2+}

Figure 2. a) Effects of FeO₄²⁻ concentration on Ca²⁺-induced oxygen generation (O₂ determined by Clark electrode) by K_2 FeO₄ at pH 10 and 298 K. [Ca²⁺] = 20 mm. b) Plot of initial rate of O₂ evolution versus [FeO₄²⁻]². Slope = 0.29, y-intercept = 1.93×10^{-8} , $r^2 = 0.996$.

concentration on oxygen generation under an excess of FeO₄²⁻ (2.5 mm) were also investigated (Figure 3a). A plot of initial rate versus Ca2+ concentration gives a straight line (Figure 3b). These result are in accordance with the rate law: $d[O_2]/dt = k_{Ca}[Ca^{2+}][FeO_4^{2-}]^2$. The same rate law was observed when Mg2+ or Sr2+ was used to activate FeO42-(Figure S6–12). The rate constants $(M^{-2}s^{-1})$ follow the order $k_{\text{Mg}}(0.138 \pm 0.017) > k_{\text{Ca}}(0.129 \pm 0.014) > k_{\text{Sr}}(0.09 \pm 0.018),$ this order is the same as that of their Lewis acidity (pK_a of Mg²⁺, Ca²⁺ and Sr²⁺ are 11.2, 12.7, and 13.2, respectively).^[18] However, the differences in the rate constants are rather small, despite a difference in two pK_a units among these metal ions. When Ba²⁺ (p K_a 13.4) was added to FeO₄²⁻ at pH 9–10, a precipitate of Ba[FeO₄] was immediately formed, and no O₂ evolution could be observed. Other M²⁺ aqua ions such as Co²⁺, Ni²⁺, and Zn²⁺ gave M(OH)₂ precipitates at pH 9–10.

The effects of Ca^{2+} on FeO_4^{2-} in water has also been monitored by UV/Vis spectrophotometry (Figure S13). There is a gradual appearance of a broad absorption around 400 nm, consistent with the formation of Fe(OH)₃. Similar changes were observed when Sr^{2+} or Mg^{2+} was used instead of Ca^{2+} .

To determine the source of O atoms in O_2 evolved, ¹⁸O-labeling experiments were performed. Fe O_4^{2-} exchanges its O atoms with H₂O, and a rate constant of 1.37×10^{-3} s⁻¹ at 273 K was reported. ^[17a] In our hands we obtained a first-order rate constant of $(2.18 \pm 0.27) \times 10^{-3}$ s⁻¹ ($t_{1/2} = 5.3$ min) at 298 K for

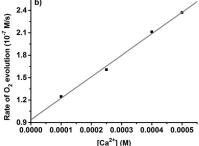
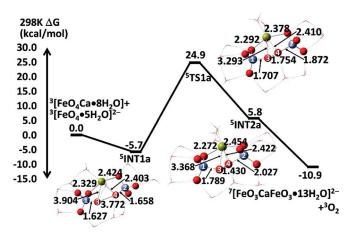


Figure 3. a) Effects of Ca^{2+} concentration on oxygen generation (O_2 determined by Clark electrode) by K_2FeO_4 at pH 10. [FeO_4^{2-}] = 2.5 mm. b) Plot of initial rate of O_2 evolution vs. [Ca^{2+}]. Slope = 2.87×10⁻⁴, γ-intercept = 9.37×10^{-8} , $γ^2 = 0.993$.

O-exchange between K₂Fe¹⁶O₄ and H₂¹⁸O, using electrospray ionization mass spectrometry (ESI/MS; Table S2 and Figure S14,15). When K₂Fe¹⁸O₄ was dissolved in H₂¹⁶O at pH 10 in the presence of 8 mol equivalents of Ca²⁺ at 298 K, the O₂ evolved after 3 min consists of 27.7 % ¹⁶O¹⁶O, 19.2 % ¹⁶O¹⁸O, and 53.1 % $^{18}\mathrm{O}^{18}\mathrm{O}$; the relative amount of $^{18}\mathrm{O}^{18}\mathrm{O}$ decreased with time as a result of O-exchange between FeO_4^{2-} and water (Table S3). On the other hand, when K₂Fe¹⁶O₄/Ca²⁺ was dissolved in H₂¹⁸O, the oxygen evolved after 3 min consists of $68.7\,\%\,\,^{16}O^{16}O, 6.3\,\%\,\,^{16}O^{18}O,$ and $25.0\,\%\,\,^{18}O^{18}O$ (Table S4). As expected, the relative amount of ¹⁸O¹⁸O increased with time in this case. These results unambiguously establish that both O atoms in the O_2 evolved come from FeO_4^{2-} (after correcting for O-exchange between FeO₄²⁻ and H₂O during 3 min). The ¹⁸O-labeling results, together with the observed second-order dependence of the rate on FeO₄²⁻ concentration, are consistent with a O2 evolution mechanism that involves O-O coupling between two FeO₄²⁻ bound to a Ca²⁺ ion, as shown in Equations (2)-(3). The iron(IV) species formed after O₂ evolution is expected to undergo rapid disproportionation to give FeO_4^{2-} and $Fe(OH)_3$.^[17]

$$2[FeO_4]^{2-} + Ca^{2+} \rightleftharpoons \{Ca[FeO_4]_2\}^{2-}$$
 (2)

$${\text{Ca[FeO_4]_2}}^{2-} \to {\text{Ca[FeO_3]_2}}^{2-} + {\text{O}_2}$$
 (3)


We and others have previously reported that Fe₂O₃/Fe(OH)₃ nanoparticles, either directly used or generated from iron complexes and salts, can catalyze visible-light induced water oxidation by $[Ru(bpy)_3]^{2+}/S_2O_8^{2-}$ at pH 7–9. $^{[19]}$ However, the active intermediate should not be FeO₄ $^{2-}$ since in the absence of Ca²⁺ it oxidizes water very slowly in this pH range. Also Ca²⁺ ions did not have any effects on catalytic water

oxidation by this system (Figure S16).

To obtain more insights into the mechanism of Ca²⁺-induced oxygen generation by FeO₄²⁻, density functional theory (DFT) calculations have been performed on the reaction between FeO₄Ca and FeO₄²⁻. As the evolution of O₂ from FeO₄²⁻/Ca²⁺ occurs in aqueous medium, the solvent effect was treated by a hybrid model which consists of an explicit solvent effect of 13 water molecules surrounding FeO₄Ca and FeO₄²⁻ and an implicit solvent effect by polarizable continuum model (PCM).^[20] The ³[FeO₄]²⁻ and ³[FeO₄Ca] species first couple to form a stable quintet intermediate, ⁵[FeO₄CaFeO₄·13 H₂O]²⁻ (⁵INT1a) (Scheme 1).

Scheme 1. Quintet potential energy surface for the O_2 evolution from $[FeO_4Ca\cdot 8\ H_2O]+[FeO_4\cdot 5\ H_2O]^{2-}$ at the B3LYP level using LanL2TZ(f) basis set (Fe) and 6-311++G(d,p) basis set (H, O, and Ca). Relative 298 K Gibbs free energies in water are given in kcal mol⁻¹ and selected bond lengths are in Å. O red, Fe purple, Ca green.

In 5INT1a, the Ca²⁺ has an octahedral coordination environment; it is bonded to three water molecules, two oxo ligands of one FeO_4^{2-} and one oxo ligand of the other FeO_4^{2-} . The electron spin density on each FeO₄²⁻ is fairly even; the Fe metal bears approximately 1.4 electrons and the oxo ligand has approximately 0.2 electrons. This suggests that the ⁵INT1a is formed by a direct coupling of ³[FeO₄·5H₂O]^{2−} and ³[FeO₄Ca·8H₂O] without any significant change in electronic distribution. There is no significant change in Fe-O distances before and after binding to Ca²⁺ (Table S5–7). The **INT1a** then undergoes O-O coupling between a non-Ca²⁺ bound oxo ligand of one FeO₄²⁻ and a Ca²⁺-bound oxo ligand of the other FeO₄²⁻ (i.e. between O3 and O4) via **5TS1 a** to form ⁵INT2a. The O3–O4 distance is significantly shortened from 3.772 Å to 1.754 Å whereas the Fe1-O3/Fe2-O4 bond lengths are slightly elongated by 0.08–0.21 Å in **TS1a**. The free-energy barrier height (ΔG_{298}^{\dagger}) of 5 **TS1a** is 24.9 kcal mol⁻¹. In ⁵INT2a, the O3–O4 bond length of 1.430 Å is consistent with a peroxo bond. The 5INT2 a then decomposes into ${}^{3}\text{O}_{2}$ and ${}^{7}[\text{FeO}_{3}\text{CaFeO}_{3}\cdot 13\,\text{H}_{2}\text{O}]^{2-}$ with $\Delta G = -16.7\,\text{kcal}$ mol^{-1} ; and the electron spin on O3 and O4 become -1.0while the electron spin on Fe1 and Fe2 are about +2.0. Each of the remaining oxo group bears approximately 0.2 electrons. The ⁵INT2a is adiabatically correlated with ${}^{7}[FeO_{3}CaFeO_{3}\cdot 13H_{2}O]^{2-}$ and ${}^{3}O_{2}$.

We have also calculated the potential energy surface for O–O coupling through the $^3[FeO_4CaFeO_4{\cdot}13\,H_2O]^{2-}$ (*INT1a) intermediate (Scheme S1), however in this case the barrier is much higher (46.1 kcal mol $^{-1}$).

The reaction mechanisms for O_2 evolution from $FeO_4Mg + FeO_4^{2-}$ and $FeO_4Sr + FeO_4^{2-}$ are similar to that of $FeO_4Ca + FeO_4^{2-}$. The ΔG_{298}^{+} (kcal mol⁻¹) for O_2 evolution from the three metal ions follow the order $Mg^{2+}(20.4) < Ca^{2+}(24.9) < Sr^{2+}(28.7)$, which is the same as the experimentally determined order.

In conclusion, we have demonstrated that the Group 2 metal aqua ions Mg²⁺, Ca²⁺, and Sr²⁺ readily activate the FeO₄²⁻ ion at pH 9–10 to generate O₂. Experimental and DFT calculations suggest that the reaction goes through a {M-[FeO₄]₂}²⁻ intermediate in which the two FeO₄²⁻ ions are bridged by M²⁺. The M²⁺ appears to play mainly a structural role that brings the two FeO₄²⁻ ions together to facilitate O-O coupling between them (I2M mechanism^[21]) to generate a peroxo species. The observed similar rate constants and calculated $\Delta G_{298}^{}$ for water oxidation activated by the three different metal ions suggests that there is little electronic effect of the M2+ ions. The Fe-O distances in free and M2+bound FeO₄²⁻ are also very similar. The proposed mechanism is similar to oxygen generation by FeO₄²⁻ in acidic medium, in which the FeO_4^{2-} is first protonated followed by spontaneous condensation to give an oxo-bridged diferrate, which then undergoes O-O coupling.^[17b] Oxygen generation by ferrate-(V) at pH around 5-8 may be represented by Equations (4)-(6). At lower pH ferrate(VI) may undergo di- and triprotonation followed by condensation ($H_3Fe^{VI}O_4$, $pK_1 = 1.5$, $pK_2 = 3.5$, $pK_3 = 7.2$). [16b] At pH > 9 μ -oxo species cannot form. However, we show in this work that the Group 2 ions can also bring the two ferrates together to facilitate O-O coupling.

$$[FeO_4]^{2-} + H^+ \rightleftharpoons [FeO_3(OH)]^- \tag{4}$$

$$2[FeO_3(OH)]^- \rightarrow [O_3Fe-O-FeO_3]^{2-} + H_2O$$
 (5)

$$[O_3Fe-O-FeO_3]^{2-} \rightarrow [O_2Fe-O-FeO_2]^{2-} + O_2$$
 (6)

Acknowledgements

This work was supported by Hong Kong University Grants Committee (AoE/P-03-08) and the Research Grants Council of Hong Kong (CityU 101612 and CityU 11301514).

Keywords: calcium · dioxygen generation · iron(VI) · Lewis acid

How to cite: Angew. Chem. Int. Ed. **2016**, 55, 3012–3016 Angew. Chem. **2016**, 128, 3064–3068

^[1] J. P. McEvoy, G. W. Brudvig, Chem. Rev. 2006, 106, 4455-4483.

^[2] J. Barber, Chem. Soc. Rev. 2009, 38, 185-196.

^[3] Y. Umena, K. Kawakami, J. R. Shen, N. Kamiya, *Nature* 2011, 473, 55-60.

^[4] J. Yano, V. Yachandra, Chem. Rev. 2014, 114, 4175-4205.

Zuschriften

- [5] C. S. Mullins, V. L. Pecoraro, Coord. Chem. Rev. 2008, 252, 416–443.
- [6] G. C. Dismukes, R. Brimblecombe, G. A. N. Felton, R. S. Pryadun, J. E. Sheats, L. Spiccia, G. F. Swiegers, Acc. Chem. Res. 2009, 42, 1935–1943.
- [7] J. S. Kanady, E. Y. Tsui, M. W. Day, T. Agapie, *Science* 2011, 333, 733–736.
- [8] S. Mukherjee, J. A. Stull, J. Yano, T. C. Stamatatos, K. Pringouri, T. A. Stich, K. A. Abboud, R. D. Britt, V. K. Yachandra, G. Christou, A. Affiliations, *Proc. Natl. Acad. Sci. USA* 2012, 109, 2257–2262
- [9] J. S. Kanady, P. H. Lin, K. M. Carsch, R. J. Nielsen, M. K. Takase, W. A. Goddard III, T. Agapie, J. Am. Chem. Soc. 2014, 136, 14373–14376.
- [10] C. X. Zhang, C. H. Chen, H. X. Dong, J. R. Shen, H. Dau, J. Q. Zhao, *Science* 2015, 348, 690–693.
- [11] E. Y. Tsui, R. Tran, J. Yano, T. Agapie, Nat. Chem. **2013**, *5*, 293 200
- [12] E. Y. Tsui, T. Agapie, Proc. Natl. Acad. Sci. USA 2013, 110, 10084-10088.
- [13] M. M. Najafpour, T. Ehrenberg, M. Wiechen, P. Kurz, Angew. Chem. Int. Ed. 2010, 49, 2233–2237; Angew. Chem. 2010, 122, 2281–2285.
- [14] M. Wiechen, I. Zaharieva, H. Dau, P. Kurz, Chem. Sci. 2012, 3, 2330–2339.

- [15] S. Bang, Y. M. Lee, S. Hong, K. B. Cho, Y. Nishida, M. S. Seo, R. Sarangi, S. Fukuzumi, W. Nam, *Nat. Chem.* 2014, 6, 934–940.
- [16] a) V. K. Sharma, R. Zboril, R. S. Varma, Acc. Chem. Res. 2015, 48, 182-191; b) V. K. Sharma, Coord. Chem. Rev. 2013, 257, 495-510; c) V. K. Sharma, J. Environ. Manage. 2011, 92, 1051-1073.
- [17] a) H. Goff, R. K. Murmann, J. Am. Chem. Soc. 1971, 93, 6058–6065; b) R. Sarma, A. M. Angeles-Boza, D. W. Brinkley, J. P. Roth, J. Am. Chem. Soc. 2012, 134, 15371–15386; c) Y. Lee, R. Kissner, U. Gunten, Environ. Sci. Technol. 2014, 48, 5154–5162.
- [18] S. J. Hawkes, J. Chem. Educ. 1996, 73, 516-517.
- [19] a) G. Chen, L. J. Chen, S. M. Ng, W. L. Man, T. C. Lau, Angew. Chem. Int. Ed. 2013, 52, 1789-1791; Angew. Chem. 2013, 125, 1833-1835; b) D. Hong, S. Mandal, Y. Yamada, Y. M. Lee, W. Nam, A. LIobet, S. Fukuzumi, Inorg. Chem. 2013, 52, 9522-9531; c) Q. J. Xiang, G. Chen, T. C. Lau, RSC Adv. 2015, 5, 52210-52216.
- [20] a) S. Miertuš, E. Scrocco, J. Tomasi, Chem. Phys. 1981, 55, 117–129; b) S. Miertuš, J. Tomasi, Chem. Phys. 1982, 65, 239–245.
- [21] X. Sala, S. Maji, R. Bofill, J. García-Antón, L. Escriche, A. Llobet, Acc. Chem. Res. 2014, 47, 504–516.

Received: November 1, 2015 Published online: January 22, 2016